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A B S T R A C T

Although the determination of ground reaction curve (GRC) for tunnels has been extensively studied, formation
of a damaged zone around the tunnel along with effects of some new features, including intermediate principle
stress, exponential decaying dilation parameter, weight of the damaged rock and Young’s modulus variation in
the excavation damaged zone (EDZ) on the GRC development have not yet been considered. In this paper,
considering all the affecting parameters including the previously studied ones and the new features, a com-
prehensive solution for the calculation of GRC of circular tunnels is presented. First, defining a more realistic
medium for medium quality rock mass, behavior of tunnel’s surrounding rock mass is categorized into elastic,
plastic and excavation damaged zones, where materials in the plastic zone experience a strain softening. Also,
rock mass through this strain softening, elastic-plastic-EDZ medium obeys Unified strength criterion (USC). Next,
regarding the new defined medium, radial stress at the plastic-EDZ boundary is numerically calculated. Defining
separate normalized radiuses for the plastic and damaged zones, thickness of annuluses, also, stress and strain
increments are derived for different regions through finite difference solution of governing equilibrium and
compatibility equations. The results of the proposed algorithm are verified using the field measurement data of
Hanlingjie tunnel, China and its high accuracy is shown. Also, omitting the new features of the proposed al-
gorithm, its comprehensiveness is discussed through comparison with some available solutions in the literature
and a very good consistency is obtained. On the other hand, considering new features of the proposed algorithm,
a considerable discrepancy is achieved indicating the importance of consideration of these features in the ground
reaction curve development.

1. Introduction

Stresses and strains around tunnels have been extensively in-
vestigated as one of the major elements of tunnel design (Alejano et al.,
2009, 2010; Alonso et al., 2003; Azadi and Hosseini, 2010; Brown et al.,
1983; Carranza-Torres and Fairhurst, 1999; Carranza-Torres and
Fairhurst, 2000; Ghorbani and Hasanzadehshooiili, 2017; González-Cao
et al., 2013; Katzenbach et al., 2013). Also, Lee and Pietruszczak
(2008), Park et al. (2008), Sharan (2008), Zareifard and Fahimifar
(2016), Zhang et al. (2017) have studied such behaviors. These analyses
are used to develop the ground reaction curve (GRC) of differently
shaped tunnels constructed in rock masses of differing quality under
different in-situ stress states. Due to the complexities of these problems,
some of the complicated rock mass behaviors, in-situ stress states, and
tunnel shapes cannot be analytically solved, and there is no

straightforward, coupled, numerical-analytical solution to the problem.
Indeed, different solution approaches (finite element, finite difference,
discrete element, boundary element or combined methods, e.g., finite
discrete element methods) to the rock mechanics and tunneling pro-
blems are available (Clausen, 2007; Ghorbani et al., 2013; Hamdi et al.,
2014; Lee and Pietruszczak, 2008; Vrakas and Anagnostou, 2014) and
these special types of problems can be solved using available com-
mercial (FE, FD, BE, FDE, etc.) codes. Nevertheless, regarding the ad-
vantages of an independent analytical or coupled analytical-numerical
solution method (e.g., the possibility of simply conducting parametric
studies, validating constitutive models, validating numerical simulation
stages using commercial codes, improving and applying developed
codes for other scientific and research purposes, making modifications
to source code to account for specific considerations, and benefitting
from simplicity in modeling compared to the complicated design steps
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in commercial software packages), some simplifications are made to the
original problem, and it has been further investigated analytically or
coupled analytically-numerically (Alonso et al., 2003; Brown et al.,
1983; Ghorbani and Hasanzadehshooiili, 2017; González-Cao et al.,
2013; Zou et al., 2017; Lee and Pietruszczak, 2008; Park, 2014, 2015;
Sharan, 2008; Vrakas and Anagnostou, 2014), also, (Wang et al., 2010;
Zareifard and Fahimifar, 2014, 2016). Some of the related research is
focused on the GRC of circular openings below groundwater level and
investigation of the effects of seepage forces and pore water pressure on
the response of the opening (Zareifard and Fahimifar, 2014), (Park,
2015) and (Vrakas and Anagnostou, 2014) studied the GRC for large
strains in high squeezing rock masses using similarity solutions. But, the
main focus of this paper is on circular openings in an isotropic rock
mass under hydrostatic in-situ stress field that is experiencing in-
finitesimal strain increments and is constructed in a strain-softening,
elastic-plastic-EDZ rock mass. To model the material's behavior, dif-
ferent strength criteria may be applied. Among the available solutions,
some of them use the linear Mohr-Coulomb strength criterion (Alejano
et al., 2009; Guan et al., 2007; Park, 2015; Zareifard and Fahimifar,
2014), and others implement the nonlinear Hoek-Brown strength cri-
terion (Alejano et al., 2010; Carranza-Torres and Fairhurst, 1999, 2000;
Zou et al., 2017; Mohammadi and Fahimifar, 2015; Park et al., 2008;
Sharan, 2008). But, it is believed that nonlinear Unified criterion,
considering the effect of intermediate principle stress, will better re-
present material's stress-strain behavior (Mohammadi et al., 2013; Xu
and Yu, 2006; Yu et al., 2002; Zhang et al., 2010, 2012). Hence, Unified
strength criterion is adopted to define the material's peak and residual
stress-strain behaviors. Also, elastic-brittle-plastic, elastic-perfect
plastic, and elastoplastic strain softening material behaviors are con-
sidered as the materials' constitutive laws in different analyses (Alonso
et al., 2003; Brown et al., 1983; González-Cao et al., 2013; Lee and
Pietruszczak, 2008; Park, 2014, 2015; Sharan, 2008; Wang et al., 2010;
Zareifard and Fahimifar, 2014) Elastic-brittle-plastic behavior stands
for hard rock masses with Geological Strength Index, GSI , values more
than 75, while elastic-perfectly plastic behavior better represents the
behavior of soft rock masses with GSI values lower than 25 (Alejano
et al., 2009). Two first laws neglect the material softening, while the
third model, accounting for the deterioration of material's strength
parameters in the softening region, presents the behavior of a wider
range of rock masses (medium rock mass with GSI25 75< < ), elastic-
plastic behavior with strain softening. Moreover, to better interpret the
post-peak behavior of rock masses and the relationship between radial
and tangential plastic strain increments, more complicated dilatancy
models should be applied (Alejano and Alonso, 2005; Alejano et al.,
2009). Among the available solutions, (Alejano et al., 2009) and
(Ketabian and Molladavoodi, 2015) considered such post-peak treat-
ments, showing an exponential decay in the dilation parameter. How-
ever, as will be shown, these researchers do not consider the formation
of an excavation damaged zone around the tunnel. Other available
solutions assume a constant dilation parameter (Brown et al., 1983;
Carranza-Torres and Fairhurst, 1999; Carranza-Torres and Fairhurst,
2000; Zou et al., 2017; Ghorbani and Hasanzadehshooiili, 2017;
González-Cao et al., 2013; Mohammadi et al., 2013; Zareifard and
Fahimifar, 2012, 2016) or provide a framework to supply dilation angle
into the dilation parameter iteratively, and asses post-peak behavior
with a linear decay in the dilation parameter (Lee and Pietruszczak,
2008; Mohammadi and Fahimifar, 2015; Park et al., 2008). In addition,
as described, since tunneling is commonly conducted using one of the
blasting or excavating methods, a damaged zone is formed around the
blasted or excavated tunnel’s section (González-Cao et al., 2013; Huang
et al., 2016; Mohammadi et al., 2013; Zareifard and Fahimifar, 2016).
The induced zone is generally described as the excavation damaged
zone (EDZ), and the degree of induced damage as well as the radius of
the damaged zone can be calculated using observation and classical
methods (Anläggnings AMA 98, 1999) or quantified using the (García-
Bastante et al., 2012) method based on Langefor’s theory of blast

calculation. Since the majority of rock masses surrounding the tunnels
are medium rock masses, also, due to blasting operations, an excavation
damaged zone is often formed around the tunnels, it is important to
consider the elastoplastic stress-strain behavior and to consider the
effects of variable post peak dilatancies and the material’s softening in
the plastic zone, as well as the effects of EDZ. Hence, this paper con-
siders all of the important described elements. Regarding (Saiang,
2008a), the developed EDZ should consider the deterioration of the
material’s strength and stiffness parameters through EDZ (Saiang,
2008a). Also, taking the weight of crushed rock in EDZ into con-
sideration will increase the accuracy of developed models. Among the
developed solutions to the problem of ground reaction curve, only
(González-Cao et al., 2013; Mohammadi et al., 2013; Zareifard and
Fahimifar, 2016) considered the formation of EDZ around the tunnel in
their models. Nevertheless, there remain some major shortcomings in
the available solutions. In research conducted by Mohammadi et al.
(2013), formation of the plastic zone is ignored, and an elastic-EDZ
region is the domain of the problem. In González-Cao et al. (2013),
although an efficient coupled self-similar-FE solution is applied to in-
vestigate the GRC of the circular tunnel in an elastic-plastic-EDZ rock
mass, the deterioration of material stiffness and consideration of the
weight of EDZ are not considered. Also not taken into account in their
models are the effects of variable post peak dilatancies. Moreover, their
proposed method uses the linear Mohr-Coulomb strength criterion,
which is believed to have some shortcomings in the simulation of
nonlinear stress-strain behaviors compared to the available nonlinear
Hoek-Brown and unified strength criteria. Zareifard and Fahimifar
(2016) suggested an elastic-plastic-EDZ rock mass behavior in their
proposed closed-form solution, but their solution only covers elastic-
brittle-plastic and elastic-perfectly-plastic material behaviors, and
strain softening in the plastic zone was not considered. Moreover, as
EDZ considerations, neither the weight of damaged rock nor the dete-
rioration of the material’s stiffness is considered. Table 1 presents a
comprehensive literature survey on the problem of the ground reaction
curve of circular tunnels in rock masses. In this table, the applied
strength criteria and type of used flow rule, consideration of strain
softening, and availability of an excavation damaged zone in all the
studied cases are presented. Details of the considerations in EDZ also
are presented.

Among the available solutions, some of the presented studies pro-
pose a closed-form solution to the problem thanks to simplifications
made to the original problem (Sharan, 2008; Zareifard and Fahimifar,
2016). Others apply numerical or semi-analytical methods. These stu-
dies generally use two different solution approaches: some of them
apply a self-similar solution to obtain the values of tunnel convergence
against different internal support pressures (Alejano et al., 2009, 2010;
Alonso et al., 2003; González-Cao et al., 2013; Park, 2014, 2015). The
second group follows a sequential and iterative solution scheme for the
solution of their problem (Brown et al., 1983; Zou et al., 2017; Ketabian
and Molladavoodi, 2015; Lee and Pietruszczak, 2008; Mohammadi and
Fahimifar, 2015; Park et al., 2008; Wang et al., 2010; Zareifard and
Fahimifar, 2012). In this group, Zou et al. (2017) uses a different
treatment with the normalized radius to update stresses and corre-
spondingly calculate strains. In addition, some intelligent methods have
also been applied to obtain ground reaction curve. (Ghorbani and
Hasanzadehshooiili, 2017) (2017) used the evolutionary polynomial
regression and neural network methods to develop some new re-
lationships for both the Mohr-Coulomb and Hoek-Brown strain soft-
ening material models based on available solutions (Ghorbani and
Hasanzadehshooiili, 2017; Ghorbani et al., 2018).

Because there have not been many studies on the ground reaction
curve of tunnels in elastic-plastic-EDZ rock masses, this paper presents a
comprehensive study in which many parameters of concern are con-
sidered. In order to comprehensively investigate the ground reaction
curve of a circular tunnel, an iterative finite difference procedure si-
milar to the method applied in Lee and Pietruszczak (2008) is used and
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is extended to the EDZ using some newly derived relationships. The
nonlinear Unified Strength Criterion (USC) is adopted, and the effect of
strain softening in the plastic zone is considered. This strength criterion
considers the effects of intermediate principle stress, which are not
addressed in the original Mohr-Coulomb or Hoek-Brown criteria. In
fact, the Hoek-Brown failure criterion can be considered as a special
case for Unified criterion in which the effect of intermediate principle
stress is not considered. As shown in Table 1, the new proposed method
models the elastic-plastic-EDZ behavior of the surrounding rock mass in
the which material’s strength parameters and stiffness deterioration,
and the weight of the damaged zone in EDZ are considered. Post-peak
variable dilatancy models presented by Alejano and Alonso (2005) and
Alejano et al. (2009) are also considered to cover a wide range of the
material’s behavior. Unlike previous available solutions, the new solu-
tion makes it possible to comprehensively consider all the parameters
that affect GRC when required data is available for modeling purposes.

2. Problem definition and methodology

A circular tunnel in a continuous isotropic elastic-plastic-EDZ rock
mass, which is under far field hydrostatic stress, 0, is depicted in Fig. 1,
where an internal support pressure of is exerted on the tunnel
boundary. In Fig. 1, bi is the tunnel radius, and REDZ and RP , respec-
tively, present the radius of the excavation damaged zone and the

Table 1
A literature survey on the ground reaction curve problem of circular tunnels.

Research Concerning parameters

Failure
criterion

Flow rule Exponential decaying
dilation

Strain
softening

EDZ considerations

Weakened strength
parameters

Weight of
EDZ

Varying Young’s
modulus

Brown et al. (1983) H-B assoc. × √ × × ×
Carranza-Torres and Fairhurst (1999) H-B non-assoc. × × × × ×
Carranza-Torres and Fairhurst (2000) H-B non-assoc. × × × × ×
Alonso et al. (2003) M-C & H-B non-assoc. × √ × × ×
Mitaim and Detournay (2005) Duncan-

Chang
non-plastic × × × × ×

Xu and Yu (2006) Unified non-assoc. × × × × ×
Guan et al. (2007) M-C assoc. × √ × × ×
Sharan (2008) H-B assoc. × × × × ×
Park et al. (2008) H-B non-assoc. × √ × × ×
Lee and Pietruszczak (2008) M-C & H-B non-assoc. × √ × × ×
Alejano et al. (2009) M-C non-assoc. √ √ × × ×
Wang et al. (2010) M-C & H-B non-assoc. × √ × × ×
Zhang et al. (2010) Unified non-assoc. × × × × ×
Alejano et al. (2010) H-B non-assoc. × √ × × ×
Serrano et al. (2011) M-C & H-B non-assoc. × × × × ×
Wang and Yin (2011) M-C & H-B non-assoc. × × × × ×
Zareifard and Fahimifar (2012) H-B non-assoc. × √ × × ×
Zhang et al. (2012) Unified non-assoc. × × × × ×
Mohammadi et al. (2013) Unified non-assoc. × × √ × ×
González-Cao et al. (2013) M-C non-assoc. × √ √ × ×
Vrakas and Anagnostou (2014) M-C non-assoc. × × × × ×
Zareifard and Fahimifar (2014) M-C non-assoc. × × × × ×
Park (2014) M-C & H-B non-assoc. × √ × × ×
Park (2015) M-C non-assoc. × × × × ×
Mohammadi and Fahimifar (2015) H-B non-assoc. × √ × × ×
Ketabian and Molladavoodi (2015) M-C & H-B non-assoc. √ √ × × ×
Zareifard and Fahimifar (2016) M-C & H-B non-assoc. × × √ × ×
Ghorbani and Hasanzadehshooiili

(2017)
M-C & H-B non-assoc. × √ × × ×

Zou et al. (2017) M-C & H-B non-assoc. × √ × × ×
Present study Unified non-assoc. √ √ √ √ √

Note: M-C=Mohr-Coulomb strength criterion; H-B=Hoek-Brown strength criterion; Unified=Unified Strength Criterion; assoc.= associative flow rule; non-
assoc.= non-associative flow rule; √ = considered; × = not considered.

Fig. 1. Definition of different regions formed around a circular tunnel.
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plastic zone. In such cases, with decreasing internal support pressure,
the formation of radial displacements initiates in the tunnel boundary.
It continues to elastically deform until the support pressure reaches a
critical value called critical support pressure, Pic (Lee and Pietruszczak,
2008; Park et al., 2008); this value has a closed form solution for linear
Mohr-Coulomb strength criterion (Brown et al., 1983) and is found
numerically by using the Newton-Raphson algorithm for Hoek-Brown
criterion (Lee and Pietruszczak, 2008; Park et al., 2008; Zareifard and
Fahimifar, 2012). In this paper, like the Hoek-Brown case, the Newton-
Raphson method is applied to obtain the critical support pressure for
the case of Unified strength criterion. For internal support pressures less
than critical support pressure and progressing toward the tunnel’s face,
the plastic stresses and strains occur. Stresses and strains in the plastic
zone first follow a strain softening behavior and continue to progress in
a residual way. The transition between softening and residual behaviors
is controlled using a critical deviatoric plastic strain parameter, p

(Abbasi et al., 2014; Alejano et al., 2010; Alonso et al., 2003; Ghorbani
and Hasanzadehshooiili, 2017; Zou et al., 2017; Lee and Pietruszczak,
2008; Park et al., 2008). Progressing toward the tunnel face, an ex-
cavation damaged zone is formed. Radial stress in the plastic-EDZ
boundary is found numerically using a proper Runge-Kutta-Fehlberg
method (Mathews and Fink, 2004) and controls the stage of the solu-
tion. For radial stress larger than the plastic-EDZ boundary’s radial
stress, r

P E, the problem remains in the plastic region, follows a solu-
tion like the Lee and Pietruszczak (2008), and continues to reach the
boundary value. For radial stress lower than r

P E , the problem uses
outputs of the last stage in the plastic zone as the initial conditions, and
proposes a new solution for the excavation damaged zone. Basics and
main governing elements of the problem are presented in the following
sections.

2.1. Unified yield criterion

Among developed rock strength criteria, those that track the prin-
ciple stress-strain incremental paths in a non-linear way are largely
applied and believed to more efficiently predict the behavior of mate-
rials (Alejano et al., 2010; Alonso et al., 2003; Carranza-Torres and
Fairhurst, 1999, 2000; Hasanzadehshooiili et al., 2012; Hoek and
Brown, 1997; Lee and Pietruszczak, 2008; Park et al., 2008; Sharan,
2008; Mohammadi and Fahimifar, 2015), also, (Veiskarami et al., 2012;
Zareifard and Fahimifar, 2012). Regarding (Xu and Yu, 2006; Yu et al.,
2002; Zhang et al., 2012), intermediate principle stress plays an im-
portant part in the radius of the excavation damaged zone. Hence,
adopting a failure criterion, which accounts for the effect of inter-
mediate principle stress, will result in better predictions of material
behavior. Yu et al. (2002), based on true triaxial compression tests and
the generalized form of the Hoek-Brown failure criterion, and con-
sidering intermediate principle stress, presented the Unified Strength
Criterion (USC). Eqs. (1)–(3) show the generalized form of USC in a
polar coordinate system (Yu et al., 2002; Zhang et al., 2010).

Y m s( )r b
r

c

a= + +
(1)

Y b
b

2( 1)
(2 ) c= +

+ (2)

b b( )
( )

0 1c t t c

t c

0

0
= +

(3)

where is the maximum principle stress (tangential stress) and r is the
minimum principle stress (radial stress). mb, s, and a represent Hoek-
Brown strength parameters for rock mass. And, b is a material para-
meter, which reflects the effect of intermediate principle stress and is
calculated experimentally using true triaxial tests. It varies from 0 (the
criterion will be changed into generalized form of Hoek-Brown cri-
terion) to 1 (generalized Twin shear stress criterion is formed). In ad-
dition, c, t , and 0, respectively, show the uniaxial compressive

strength, uniaxial tensile strength, and shear strength of rock material,
and Y is an intermediate parameter used to define the effect of b
parameter (Yu et al., 2002; Zhang et al., 2010).

To apply plasticity rules, the Unified strength criterion is assumed as
the yield function. In addition to principle maximum and minimum
stresses, materials’ yielding is a function of the deviatoric plastic strain
parameter, p, which controls materials’ strength parameters. This
parameter is also called strain softening parameter (Lee and
Pietruszczak, 2008; Park et al., 2008). Hence, the general form of the
yield function is as following:

F H( , , ) ( , )r
p

r r
p= (4)

H b
b

m s( , ) 2( ( ) 1)
(2 ( ))

( ) ( )
( )

( )r
p

p

p c
p

b
p r

c
p

p
a ( )p

= +
+

+
(5)

where Eq. (5) is calculated combining Eqs. (1)–(3) and (4). The strain
softening parameter, p, controls the transition of strength parameters
in the plastic zone. It is not generally believed that there is a unique
approach for defining this parameter (Alejano et al., 2009, 2010;
Alonso et al., 2003; Brown et al., 1983; Ghorbani and
Hasanzadehshooiili, 2017; Lee and Pietruszczak, 2008; Mohammadi
and Fahimifar, 2015; Park et al., 2008; Sharan, 2008; Wang et al.,
2010), and, (Zareifard and Fahimifar, 2012). Nevertheless, it is com-
monly defined as Eq. (6) (Lee and Pietruszczak, 2008; Park et al., 2008).
This paper also uses Eq. (6) to define the softening behavior of rock
mass and the transition of strength parameters in the plastic region.

p p
r
p= (6)

where p is the tangential plastic strain and r
p declares the radial plastic

strain.

2.2. Plastic potential function

Definition of a proper plastic potential function is one of the im-
portant factors affecting the progress of plastic strains. Indeed, since the
relationship between radial and tangential plastic strain increments is
defined by the flow rule, considering an associated or non-associated
flow rule significantly affects the material’s plastic behavior in the
plastic zone. In this paper, the non-associated flow rule is used to model
the relationship between radial and tangential plastic strain increments.
Plastic potential function can be defined in different ways. The Mohr-
Coulomb and Hoek-Brown similar forms of plastic potential are gen-
erally applied and implemented in computational geo-mechanics
(Clausen, 2007).

2.2.1. Mohr-Coulomb similar type of plastic potential function
One of the most demanding forms of plastic potential function

commonly used by rock mechanics engineers is the function presented
in Eq. (7), which is generally similar in form to the Mohr-Coulomb
strength criterion (Alejano et al., 2009).

G k( , , ) ( )r
p p

r= (7)

The peak value of k in Eq. (7) is computed using Eq. (8) (Alejano
et al., 2009).

k
sin1 ( )

1 sin( )p
p

p
=

+
(8)

where p represents peak dilation angle observed in the elastic-plastic
boundary and is calculated using the following equation (Alejano et al.,
2010):

GSI5 125
1000p
peak

p= (9)

The value of p in Eq. (9), peak friction angle in the elastic-plastic
boundary, is computed using Eq. (10), originally proposed by Hoek
et al. (2002)
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2.2.2. Hoek-Brown similar type of plastic potential function
As other authenticated plastic potential function, the general form

presented in Eq. (12) is applied as the plastic potential function similar
to the Hoek-Brown strength criterion (Clausen, 2007).

G m s( , , ) ( ) ( )
( )

( ) .r
p

r c
p

g
p r

c
p g

p
a ( )g p

= +
(12)

wheremg, sg, and ag are material parameters associated with the plastic
potential function.

2.2.3. Definition of relationship between radial and tangential plastic strain
increments

The general form of the relationship between radial and tangential
plastic strain increments is presented below (Ghorbani and
Hasanzadehshooiili, 2017; Ketabian and Molladavoodi, 2015; Lee and
Pietruszczak, 2008; Park et al., 2008; Zareifard and Fahimifar, 2012):

d k d( )r
p p p= (13)

where the relationship for k ( )p is different for M-C and H-B similar
forms of the plastic potential function. Eqs. (14), and (15), respectively,
present the variable k ( )p parameter for M-C (Alejano and Alonso,
2005) and H-B (Clausen, 2007) types of the plastic potential function.

k k e( ) 1 ( 1)p
p

p
p= + (14)

k a m m s( ) 1 ( ) ( ) ( )
( )

( )p
g

p
g

p
g

p r

c
p g

p
a ( ) 1g p

= + +
(15)

These two formulas present variable post-peak dilatancy behaviors:
decaying form of dilation parameter presented in Eq. (14) for M-C type
and variable plastic potential parameters for H-B type of plastic po-
tential. But, in the case of constant dilation rate, the curvature para-
meter in Eq. (15), a ( )g

p , must be equal to 1. Hence, k ( )p equation
will be simplified into Eq. (16) (Clausen, 2007).

k m( ) 1 ( )p
g

p= + (16)

The corresponding case for M-C type of plastic potential function
(constant dilation rate) will be k k( )p

p= .
In this paper, regarding the availability of the required data for

comparison purposes, Mohr-Coulomb similar type of plastic potential
function is used for further studies. Next, using this function, some
investigations are conducted on different dilation (no dilation, constant
dilation, linear and exponential decaying dilations) and softening be-
haviors, also, softening initiation (different critical softening para-
meters).

2.3. Strength parameters in different zones

As illustrated earlier, materials’ strength parameters are different in
various zones. In the elastic zone, peak strength parameters for an in-
tact rock mass are used to evaluate the stress-strain behavior of mate-
rials surrounding the tunnel. All the strength parameters in the plastic
zone, which are functions of deviatoric plastic strain parameter, p, are
calculated using Eq. (17) (Alejano et al., 2009, 2010; Alonso et al.,
2003; Ghorbani and Hasanzadehshooiili, 2017; González-Cao et al.,
2013; Lee and Pietruszczak, 2008; Mohammadi and Fahimifar, 2015;
Park et al., 2008; Zareifard and Fahimifar, 2012).

( )
( ) 0p p p r

p p

r
p p

p
p=

< <

(17)

where is a representative for each of the c, t , 0, m, s, a, mg, sg, ag,
and parameters. In addition, p and r subscripts respectively declare
peak and residual values of studied parameters.

Also, the value of p for each of the parameters and every level of
confinement stress is obtained experimentally using the method pro-
posed by Alejano et al. (2010) as below:

k
E M

1 1
2

[ ( ) ( )] 1 1p
p

peak
r

res
rmean mean= +

(18)

P
2r

icr r
P E

mean = +
(19)

M E e for

M E e for

[0.0046 ] 0.1

[0.0046 ] 0.05 0.1

GSI
s s

GSI
s s

0.0768
1

0.0768
2

1

p rmean
p c

rmean
p c

p rmean
p c

rmean
p c

= >

= +
(20)

where M is the drop modulus used to characterize stress-strain behavior
in Alejano et al. (2010). Also, ( )peak

rmean and ( )res
rmean are respec-

tively calculated using Eq. (1) for peak and residual strength para-
meters. E is the material's Young’s modulus. Regarding Eq. (17), ma-
terial’s behavior in plastic zone follows the first line of Eq. (17) for a
strain softening parameter less than p . Also, the residual parameters
are used when p p . Material’s residual strength parameters are
calculated using replacing the values for GSIp with GSIr and following
the same procedure available for calculation of peak strength para-
meters. GSIr can be calculated using Eq. (21) (Alejano et al., 2012).

GSI e17.25r
GSI0.0107 p= (21)

Saiang (2008a) characterized the excavation damaged zone and the
parameters induced by excavation or blasting. This research proposed a
monotonic reduction in Young’s modulus of material in EDZ. And as a
simple quantifying method, Hoek et al. (2002) proposed a disturbance
factor, D, to account for the effect of damaged zone on the strength
parameters of the material. Also, the method presented by Anläggnings
AMA 98 (1999) is an approximate method to calculate the material’s
parameters and the radius of the excavation damaged zone in EDZ.
Moreover, the method of García-Bastante et al. (2012) developed based
on Langefor’s theory of blast calculation can also be used in this regard.
Hence, strength parameters of materials in the excavation damaged
zone are different and subjected to the deterioration as a result of da-
maged induced effects (Zareifard and Fahimifar, 2016). These para-
meters are m s anda, , , , ,c t

' '
0
' ' ' ', respectively, for compressive strength,

tensile strength, shear strength, and Hoek-Brown constants of damaged
rock mass. This strength parameters can be calculated using proper
application of disturbance parameter and relationships proposed in
Hoek et al. (2002). Also, parameters used as plastic potential para-
meters in the excavation damaged zone, m s a and, , ,g g g

' ' ' ', may vary
from those used in the plastic region (Zareifard and Fahimifar, 2016).

3. Development of stress-strain formulation

In this section, the required equations (including both preliminary
basic equations and newly derived ones) to obtain the comprehensive,
new ground reaction curve based on the newly defined medium are
derived. First, radial and tangential stresses and strains around the
tunnel should be calculated. It can be explained that radial stress on the
r RP= (outer plastic zone) is equal to r R= . This point corresponds to
the elastic-plastic boundary. Indeed, when the plastic zone is formed,
the radial stress R, acting on the elastic–plastic interface is equal to Pic.
Its value is independent of radius and the radius of plastic zone can be
obtained during calculations. Also, radial stress at the inner plastic
boundary (plastic-EDZ boundary) is then calculated using Runge-Kutta-
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Fehlberg solution of governing equilibrium equation of excavation da-
maged zone. This boundary is, also, called outer EDZ boundary.
Tunnel's surface is the other problem's boundary (boundary between
tunnel's surface and EDZ), which is called inner EDZ boundary. The
value of radial stress at the inner EDZ boundary is equal to the tunnel's
support pressure, . After solving the mentioned equations and calcu-
lating the described radial stresses at the boundaries, they will be as-
sumed as a priori for the remaining solution domain. Fig. 2 better re-
presents the described boundaries and solution steps. Noting that radial
stresses on both inner and outer plastic zone boundaries are available as
a priori, (Lee and Pietruszczak, 2008) calculated radial stress increment
in the plastic zone for an elastic-plastic rock mass, r , using a mono-
tonical decrease from its value in r RP= , r R= , to its value on the
tunnel surface r bi= , Pr i= , where r represents distance from the
tunnel center (Lee and Pietruszczak, 2008). In this paper, first, radial
stress in the plastic-EDZ boundary, r

P E, is found using Runge-Kutta-
Fehlberg numerical solution (Mathews and Fink, 2004) of governing
differential equation, and then the region is divided into the plastic and
excavation damaged zones, where the values of radial stresses in the
elastic-plastic, R, and the plastic-EDZ, r

P E, boundaries are available
for the analysis of the plastic zone. Also, the values of radial stresses in
the plastic-EDZ boundary, r

P E, and the tunnel surface, , are considered
as a priori for the analysis of the excavation damaged zone.

As previously described, analyses in different regions are different
regarding the material’s strength parameters and behaviors. It is as-
sumed that the plastic zone and excavation damaged zone are com-
posed of n andm concentric annuluses, respectively. Fig. 3 shows ith and
jth arbitrary elements in the plastic and excavation damaged zones,
respectively. In this figure, ith element is marked using i( 1)th and ith

circles with the normalized radiuses of i 1 and i. Also, j 1
' and j

'

respectively show the normalized radiuses of j( 1)th and jth limiting
circles in the EDZ.

Eqs. (22) and (23) present the normalized radiuses in the plastic and

damaged zones. As it can be inferred, 1(0) = and R R/n EDZ P( ) = , re-
spectively, state outer and inner boundaries of the plastic zone. Simi-
larly, 1(0)

' = and b R/m i EDZ( )
' = (a priori) are, respectively, outer, and

inner normalized radiuses of EDZ boundaries.

r
Ri

i

P
( )

( )=
(22)

Fig. 2. Stresses at different regions.

Fig. 3. Definition of arbitrary annuluses in plastic and EDZ regions around a
circular tunnel in an elastic-plastic-EDZ rock mass.
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r
Rj

j

EDZ
( )
' ( )=

(23)

Thicknesses of both annuluses in the plastic and damaged zones are
calculated in a way that the corresponding governing equilibrium
equation is satisfied (this is further discussed in later sections). Hence,
radial stress increments in both plastic and damaged zones are not
constant. In order to solve the problem, radial and tangential stresses in
the outer boundary of the plastic zone (Eqs. (24) and (25)) presented by
Brown et al. (1983) are used as initial condition for the first solution
step (stress-strain solution in the plastic zone). Also, using the results of
nth annulus as the initial condition for the second solution step (stress-
strain solution in EDZ), total radial displacement around the tunnel can
be calculated.

2
r R

R

(0)

(0) 0
=

(24)

E
1r R

R

(0)

(0)

0

0
= +

(25)

where r (0), (0), r (0) and (0), respectively, present radial stress, tan-
gential (hoop) stress, radial strain, and tangential strain in the elastic-
plastic boundary. Also, E is Young's modulus and declares Poison's
ratio of intact rock mass in the elastic zone (Brown et al., 1983).

3.1. Radial stress in the plastic-EDZ boundary

The equilibrium equation in the plastic zone for large numbers of
constructing annulus is as follow (Lee and Pietruszczak, 2008):

d
d

0r r+ =
(26)

Regarding the weight of damaged zone, the material’s governing
equilibrium equation is different in EDZ. It is, also, different in different
directions through the excavation damaged zone. It does affect the
damaged rock masses’ governing equilibrium equation in the tunnel’s
crown. It should be noted that the strength parameters deterioration in
this zone will be the same for different directions. Hence, the present
manuscript deals with the development of the proper solution method
for the calculation of GRC in the crown and sidewalls of the tunnel.
Derivation of the governing equilibrium equation in EDZ for the side-
wall and crown directions is as follow:

In cylindrical coordinates (r , , z), the stress field around a tunnel
(as depicted in Fig. 4) has to fulfill the following equilibrium equations
(Eqs. (27) and (28)) for each element of the rock mass (Kolymbas,

2005):

r r r
F1 0rr r rr

r+ + = (27)

r r r
F1 0r r r+ + + + = (28)

where rr , , r and r are stress components, while Fr and F re-
present body forces.

Regarding the basic assumptions of the convergence-confinement
method (hydrostatic stress field and a uniform internal support pres-
sure), also, considering that this research proposes the solution for the
tunnel's crown (in the vertical direction) and sidewalls (in the hor-
izontal direction), the problem follows of assumptions considered in
Zareifard and Fahimifar (2012), Fahimifar et al. (2014) and hence, the
problem will be simplified into Fig. 5 for the horizontal and vertical
directions. Hence, the term “r

1 r ” will be vanished and the equilibrium
equation will be simplified into Eq. (29).

d
dr r

F 0r r
r+ = (29)

where Fr is the radial term of the body force and depends on the
gravitational load in EDZ with respect to the direction. Since
F sinr = , the term of body force in the vertical direction will be
“ ”, while it equals to zero at the horizontal direction. Hence, the
equation of equilibrium in the damaged zone, will be as Eq. (30) for the
vertical direction. The same method has, also, been used by Zareifard
and Fahimifar (2012), Fahimifar et al. (2014) to develop the stress
around the circular tunnel for the case of Hoek-Brown strength criterion
and consideration of gravitational loads exerted to the shallow tunnels,
where a strain softening, elastoplastic solution is presented. Regarding
this equation and considering the normalized radius in EDZ, Eqs. (31)
and (33), respectively, present damaged rock masses’ governing equi-
librium equations in the tunnel’s crown and sidewalls.

d
dr r

0r r '+ = (30)

d
d

H R( )r r
EDZ'

'

'
'= +

(31)
Fig. 4. Stresses and body forces in an arbitrary element around the tunnel.

Fig. 5. Stresses and body forces in an arbitrary element in horizontal and
vertical directions.
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H b
b

m s( ) 2( 1)
(2 )

r c b
r

c

a
'

'

'
' '

'
'

'

= +
+

+
(32)

d
d

H ( )r r
'

'

'=
(33)

where “prime” superscript denotes the excavation damaged zone’s
parameters. Also, ' is the unit weight of damaged rock mass in EDZ.
Regarding the nonlinearity of the developed differential equations,
there is not any analytical solution to the problem. Hence, Eqs. (31) and
(33) are solved using the fifth order Runge-Kutta-Fehlberg method
considering initial value condition at the tunnel surface ( Pr i= at
r b )i= (Mathews and Fink, 2004). And, r

P E in the plastic-EDZ
boundary are calculated for the tunnel’s crown and sidewalls.

3.1.1. Runge-Kutta-Fehlberg method to gain radial stress in the plastic-EDZ
boundary

To solve Eqs. (31) and (33), the Runge-Kutta-Fehlberg solution
method can be used. In this method, the first order ordinary nonlinear
differential equation of damaged rock mass equilibrium is solved con-
sidering initial value condition Pr i= at r b b R( / )i i i EDZ0

'= = .
For an assumed equilibrium equation in the form of Eq. (31),

function f is defined as shown in Eq. (35).

f d
d

H R( , ) ( )
r

r r
EDZ

'
'

'

'
'= = +

(34)

Fourth and fifth order approximations to the solution of the problem
are, respectively, presented in Eqs. (35) and (36) (Mathews and Fink,
2004).

y y k k k k25
216

1408
2565

2197
4101

1
5k k1 1 3 4 5= + + ++ (35)

z y k k k k k16
135

6656
12825

28561
56430

9
50

2
55k k1 1 3 4 5 6= + + + ++ (36)

where ki coefficients are calculated using following equations. Also,
yk 1+ and zk 1+ are fourth order and fifth order approximation of the
equilibrium equation in the plastic-EDZ boundary, respectively. Coef-
ficients used to calculate ki are presented in Table 2.

k hf t y( , )k k1 = (37)

k hf t a h y b k i, & (2, 6)i k i k
j

i

i j j
2

( )( 1) 1= + +
= (38)

In these equations, tk and yk, respectively, represent j
' and r values

in each of solution steps, and h defines the selected step size. The ac-
curacy of the solution is acceptable when the following equation is
satisfied (Mathews and Fink, 2004):

Tolerance z y Acceptable Tol| |k k1 1= + + (39)

where Tol is the pre-defined acceptable accuracy for prediction of r
P E.

Also, Tolerance parameter shows the value of tolerance calculated in
each step size. In order to increase the accuracy of prediction and satisfy
the controlling equation, Eq. (39), step size, h, can be reduced. The
optimum step size can be found using multiplying s variable presented
in Eq. (40) to the current h (Mathews and Fink, 2004).

s h Tol
z y

0.84 (
| |

)
k k1 1

1/4= × ×
+ + (40)

The developed Fortran program to obtain the value of r
P E using a

fifth order Runge-Kutta-Fehlberg step size control solution scheme
(Mathews and Fink, 2004) is presented in “Supplementary material B”.

(Park, 2014) applies the Cash-Karp version of the Runge-Kutta-
Fehlberg (R-K-F) approach (Chapra and Canale, 2002) to solve their
self-similarity equations in the plastic region (Park, 2014). Since it uses
this method in the solution of stress-strains in the plastic region, it is
subjected to a transition region, softening-residual boundary, where
strength parameters are different in the two different zones and result
in different governing equations. Hence, instable results are gained
through their solution for Hoek-Brown criterion. In such cases, the
classical Runge-Kutta method is applied to overcome this difficulty. In
addition, not using a proper optimum adaptive step size may be another
possible cause of the observed tolerances. Nevertheless, in this paper,
the optimum adaptive step size control and original R-K-F method is
used. In addition, the equation of equilibrium in the excavation da-
maged zone does not contain a transition zone and therefore results in
accurate results.

3.2. Stress-strain relationships in the plastic zone

As described in the previous sections, the radial stress and the in-
crements of radial stress in the plastic zone are calculated based on the
initial conditions and the preliminary calculations of R and r

P E.
General calculations presented in this section are similar to those pre-
sented by Lee and Pietruszczak (2008). However, the used strength
criterion (along with its corresponding input parameters), initial
boundary conditions, also, the dilation and critical softening parameter
calculations are different.

Radial stress through the plastic zone is obtained using the mono-
tonic decrease of R (in the elastic-plastic boundary) to the r

P E (in the
plastic-EDZ boundary). Hence, radial stress increment is assumed to be
obtained using Eq. (41).

nr
r
P E

R= (41)

where r is the radial stress increment and n represents the number of
annuluses in the plastic zone.

It should be noted that although the increment of radial stress is
constant throughout the plastic zone, the thicknesses of annuluses are
not the same. This is because the radius of each annulus is calculated in
a way that the corresponding governing equilibrium equation is sa-
tisfied.

3.2.1. Stresses
Starting from the elastic-plastic boundary with the radial stress of

R, Eq. (42) is used to calculate the radial stress of each annulus in the
plastic zone (Lee and Pietruszczak, 2008). Also, the corresponding
tangential stress of each annulus and its increment can be found by
applying Eq. (42) into Eq. (25) and Eq. (1) based on the simple calcu-
lations presented in Eqs. (43) and (44) (Lee and Pietruszczak, 2008).

r i r i r( ) ( 1)= + (42)

H ( , )i r i r i i
p

( ) ( ) ( ) 1= + (43)

i i i( ) ( ) ( 1)= (44)

Table 2
Coefficients used to calculate ki of R-K-F solution.

i ai b i j( )( 1)

j = 2 j= 3 j= 4 j= 5 j= 6

2 1
4

1
4

– – – –

3 3
8

3
32

9
32

– – –

4 12
13

1932
2197

7200
2197

7296
2197

– –

5 1 439
216

8 3680
513

845
4104

–

6 1
2

8
27

2 3544
2565

1859
4104

11
40
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3.2.2. Strains
Elastic strain increments are calculated based on Hook's law using

radial and tangential stress increments as below (Lee and Pietruszczak,
2008):

E
1 1

1
r i
e

i
e

r i

i

( )

( )

( )

( )
= +

(45)

where E and are, respectively, Young’s modulus and Poison’s ratio of
intact rock mass in the elastic zone. r i

e
( ) is the elastic radial strain

increment, also, i
e
( ) represents elastic tangential strain increment. To

obtain radial and tangential strain in the plastic region, plastic parts of
radial and tangential strains must be defined. First, using the governing
equilibrium equation in the plastic zone, Eq. (26), the value of ith nor-
malized radius (starting from R R/ 1P P(0) = = ) is approximated using
Eq. (46), like the equation presented by Lee and Pietruszczak (2008).

H
H

2 ( ¯ , )
2 ( ¯ , )i

r i i
p

r

r i i
p

r
i( )

( ) 1

( ) 1
( 1)=

+
(46)

where ¯ ( )/2r i r i r i( ) ( ) ( 1)= + .
Then, following similar steps, the plastic tangential strain increment

can be calculated using Eq. (47) (Lee and Pietruszczak, 2008).

k

( )

(1 )i
p E

H
i

p
r i
p

i
( )

1 ( ¯ , )
¯

1
¯ ( 1) ( 1)

1 1
¯ ( 1)

i
e

i

r i i
p

i i

i i

( )

( )

( ) 1
( ) ( )

( ) ( )

=
+ +

+

(47)

where ¯ ( )/2i i i( ) ( ) ( 1)= + . In this equation, k i( 1) can be defined re-
garding the different behaviors of potential function using each of Eqs.
(14), (15), or (16). Then, r i

p
( ) is calculated using Eqs. (13) and (47).

The equation for the development of strain softening parameter in
plastic zone for different annulus radiuses is presented in Eq. (48)
(Alejano et al., 2010; Lee and Pietruszczak, 2008; Park et al., 2008;
Zareifard and Fahimifar, 2012).

( )i
p

i
p

i
p

r i
p

( ) ( 1) ( ) ( )= + (48)

Finally, total radial and tangential strain for an arbitrary annulus in
the plastic zone is calculated using Eq. (49).

{ } { }r i

i

r i

i

r i
e

i
e

r i
p

i
p

( )

( )

( 1)

( 1)

( )

( )

( )

( )
= + +

(49)

Also, the radius of the plastic region, rP, can be calculated by re-
peating the described sequential approach for n times using the nor-
malized radius of the last annulus in the plastic zone (Eq. (50)).

r R
P

EDZ

i n( )
=

= (50)

3.3. Stress-strain relationships in EDZ

The strength parameters of rock mass in the excavation damaged
zone changes. In fact, due to the blast- or excavation-induced effects,
materials’ strength parameters are weakened. Eqs. (51) and (52) show
materials’ governing strength criterion in the excavation damaged zone.
In these relationships, superscript Prime" " represents the weakened
strength parameters of rock mass in the damaged zone.

F H( , ) ( )r r r
'= (51)

H b
b

m s( ) 2( 1)
(2 )

r c b
r

c

a
'

'

'
' '

'
'

'

= +
+

+
(52)

As previously described, the results of radial, r i n r
P E

( ) == , and
tangential stresses, i n( )= , in the last annulus of the plastic zone, i n( )= ,
are considered as initial conditions for the excavation damaged zone,

r j r i n r
P E

( 0) ( )= == = and j i n( 0) ( )== = . In these initial conditions, j

represents the number of each of the annuluses in the EDZ. In this zone,
starting from r

P E, radial stress monotonically decreases toward the
value of internal support pressure, . The increment of radial stress in
this zone is assumed to be calculated using Eq. (53). Similar to the
plastic zone, thickness of radial stress in EDZ is not constant since the
normalized radius in EDZ, j( )

' , is computed in a way to satisfy the
governing equilibrium equation. Also, the number of annuluses in EDZ
is equal to m, which is sufficiently large to satisfy the desired accuracy
of stress-strain predictions. After calculation of radial displacement in
the plastic zone, in the excavation damaged zone, initial total strains
will be equal to zero, 0r j j( 0) ( 0)= == = . And, the total radial dis-
placement will be equal to the summation of the value of the radial
displacement at the plastic-EDZ boundary and the occurred radial dis-
placement in the excavation damaged zone. Other initial boundary
conditions for excavation damaged zone are

0r
p p

r
e e

r
p p

r
e e= = = = = = = = and 1j( 0)

' == .

P
mr

i r
P E

= (53)

In the excavation damaged zone, the weight of the damaged zone is
taken into the consideration, and materials’ governing equilibrium
equations are different for different directions around the tunnel.
Hence, in Eq. (53), the term r

P E is different for the tunnel’s sidewall
and crown, resulting in different r values for the tunnel’s sidewall or
crown.

3.3.1. Tunnel’s sidewall
In the tunnel’s sidewall direction, the unit weight of material will be

zero in the governing equilibrium equation and hence, the general form
of the equilibrium equation in the EDZ (in the tunnel’s sidewall) is si-
milar to that in the plastic region. But, the material’s strength para-
meters in this zone are weakened and this is the main difference be-
tween governing equilibrium equations in the plastic region and EDZ in
the sidewall direction. Another main difference between these two re-
gions is the newly defined radius-dependent Young’s modulus in EDZ,
which changes the state of elastic and plastic radial and tangential
strain increments. The governing equilibrium equation in this case is
presented as Eq. (54).

d
d

H ( ) 0r r
'

'

' =
(54)

3.3.1.1. Stresses. Radial and tangential stresses of damaged rock mass
in the tunnel’s sidewall direction is calculated by applying the general
form of Eqs. (42)–(44), where the term of H ( , )r i i

p
( ) 1 in Eq. (43) is

replaced by H ( )r
' and the term r in Eq. (42) must be calculated using

Eq. (53). The new form of stress update is presented in Eqs. (55) and
(56).

P
mr i r i

i r
P E

( ) ( 1)= + (55)

H ( )i r i r( ) ( )
'= + (56)

3.3.1.2. Strains. Radial and tangential elastic strain increments in EDZ
in the sidewall direction are obtained by replacing Young’s modulus in
Eq. (45) with the new varying Young’s modulus, E j( )

' (presented in the
following sections).

Then, the governing equilibrium equation, Eq. (54), is approxi-
mated for the jth annulus as:

H2 ( ¯ )
0r j r j

j j

r j

j j

( ) ( 1)

( )
'

( 1)
'

'
( )

( )
'

( 1)
'+

=
(57)

where ¯ ( )/2r j r j r j( ) ( ) ( 1)= + .
The normalized radius used for calculation of the plastic radial and
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tangential strain increments in the sidewall direction of the tunnel can
then be presented as following:

H
H

2 ( ¯ )
2 ( ¯ )j

r j r

r j r
j( )

'
'

( )
'

( )
( 1)
'=

+

(58)

The compatibility equation can be written as (Florence and Schwer,
1978):

d
d

0r
' '+ =

(59)

Hence, regarding the elastic and plastic portions of the radial and
tangential strains, the governing strength criterion, Eq. (59), can be re-
formulated as Eq. (60).

d
d

d
d

d
d E

H1 ( )p p
r
p e e

r
e e

r
' ' ' ' ' '

'

'+ = = +
(60)

Eq. (61) is then derived for p in EDZ (in the sidewall direction)
based on the approximation of Eq. (60) with respect to '.

k

( )

(1 )j
p E

H
j

p
r j
p

j
( )

1 ( ¯ )

¯
1

¯ ( 1) ( 1)

1 1
¯

'
( 1)

j
e

j j

r j

j j

j j

( )

( )
'

( )
'

'
( )

( )
'

( )
'

( )
'

( )
'

=
+ +

+

(61)

where k ' represents the relationship between radial and tangential
strain increments in EDZ in the sidewalls and is calculated using one of
Eq. (14) (k k ( 0)p p' = = for different ' values in each of the annuluses
in EDZ), (15), or (16). It should be noted that to obtain k ', the para-
meters associated with the potential function in the damaged zone -
m s a, , andg g g

' ' ' ' - and c
' must be used. This approach can be applied

where sufficient data is available regarding the plastic potential func-
tion in EDZ. But, in cases where there is no access to required data
associated with the variation of the plastic potential function’s para-
meters in EDZ, these parameters may be assumed constant and equal to
the last value of their corresponding parameters in the plastic zone. In
Eq. (61), ¯ ( )/2j j j( ) ( ) ( 1)= + . Also, corresponding j

p
( ) is calculated

using Eq. (62).

kr j
p

j j
p

( )
'
( 1) ( )= (62)

Then, similar to Eq. (49), total radial and tangential strains are
calculated using the summation of their cumulative previous values
with their corresponding elastic and plastic increments (Eq. (63)).

r j

j

r j

j

r j
e

j
e

r j
p

j
p

( )

( )

( 1)

( 1)

( )

( )

( )

( )
= + +

(63)

Considering the relation u r/= , the normalized displacement,U j( ),
can be achieved using Eq. (64).

U Uj i n j j( ) ( ) ( )
'= += (64)

Hence, the radial displacement at any location around the tunnel
can be attained using Eq. (65).

u u R( )j i n j j EDZ( ) ( ) ( )
'= + ×= (65)

Ground reaction curve for the tunnel’s sidewall can then be derived
using u Pj i( ) relationship.

3.3.2. Tunnel's crown
As described, the weight of the damaged zone will affect the equi-

librium equation in the tunnel’s crown and Eq. (26) will be the equation
of equilibrium in the tunnel’s crown in the excavation damaged zone.

Radial stress in different locations in the excavation damaged zone
can be computed using R-K-F solution of Eq. (31) as derived in previous
sections. Also, this equation is used here to incrementally calculate both
stresses and strains around the tunnel. The procedure is similar to the
one described for the tunnel’s sidewall. But, regarding the different

governing equilibrium equation, the equations for the normalized ra-
dius will be different. Hence, different stress and strains will be gained
for the tunnel’s crown.

In this case, the governing equilibrium equation for the jth annulus
in the excavation damaged zone can be approximated as:
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2 ( ¯ )r j r j

j j

r j

j j
EDZ

( ) ( 1)

( )
'
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'

'
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( )
'
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'

'

+
=

(66)

Solving Eq. (66) for j( )
' with finite difference approximation, the

following expression is obtained:
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(67)

Following similar steps as in the equations and steps for the tunnel’s
sidewall in EDZ, j

p
( ) , r j

p
( ) , r j( ), j( ),Ui, and ui are derived. Then, the

ground reaction curve (in the tunnel’s crown) of rock mass around the
tunnel can be depicted plotting different P ui i.

4. Proposed algorithm for calculation of the new comprehensive
GRC

In this section, using a schematic algorithm, sequential steps re-
quired to obtain GRC is presented. To do this, first, calculation of Pic and
the process of defining varying Young’s modulus through the damaged
zone is described and then the proposed algorithm is presented.

4.1. Derivation of critical support pressure

Critical support pressure demonstrates the supporting pressure,
which controls the formation of the plastic zone. In cases where internal
support pressure is less than its critical value, Pic R= (radial stress in
the elastic-plastic boundary), the plastic zone constitutes. It can be
numerically obtained by applying the Newton-Raphson root finding
method to the following nonlinear equation:

P Y m P s H2( ) ( )ic p p
ic

cp
p

a
p0 p= + =

(68)

where p subscript denotes peak parameters. This equation uses two
approaches to define differences between radial and tangential stresses
in the elastic-plastic boundary, and equaling these two obtained terms
(based on elasticity relationships and the values of stresses attained
from rock strength criterion). The simple Newton-Raphson root finding
Fortran code used to find Pic is presented in “Supplementary material
A”. To better illustrate the calculations, Eq. (69) shows the gained re-
lationship for Pic using one Newton-Raphson iteration. In this solution,
an initial guess for Pic is calculated using peak strength parameters for
corresponding intact rock (initial guess corresponds to the radial stress
at the elastic-plastic boundary and hence satisfies the strength criterion
for intact rock, a 0.5p = ).
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where the parameter A is equal to m s .m
p

m
p4 16

p

cp

p0
2

+ +

4.2. Young’s modulus in EDZ

In spite of the assumption of a constant Young’s modulus for the
elastic and plastic regions, according to the (Saiang, 2008a), Young’s
modulus of damaged rock masses is not constant. Young’s modulus as
an index for quantifying a material’s stiffness in EDZ, plays an
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important role in the calculation of stresses and strains around the
tunnel (Saiang, 2008a). As it proposes, Young’s modulus of rock ma-
terials on the tunnel surface is assumed to be calculated using the
equation proposed by Hoek and Diederichs (2006) (Eq. (70)) and
considering the relevant disturbance factor, D.

E
e

100000
1

1
m

D
' 2

D GSI

'

75 25 ' '
11

=
+

+
(70)

where D' is the disturbance factor in the generalized form of the Hoek-
Brown criterion, and GSI represents residual geological strength index.

Also, Young’s modulus of rock mass in the plastic-EDZ boundary can
be calculated by using a zero value for D' in Eq. (70) (Saiang, 2008a).
Young’s modulus through different radiuses of damaged rock masses in
EDZ is calculated using Eq. (71), considering linear interpolation be-
tween the values of Young’s modulus at the tunnel surface and the
plastic-EDZ boundary (Saiang, 2008a).

E E E E
R

R b[( ) ]j
m

EDZ
j EDZ( )

'
0
'

'
0
'

( )
'= + ×

(71)

where Ej
' is Young’s modulus of jth annulus in the excavation damaged

zone. Also, Em
' and E0

' are Young’s modulus on the tunnel’s surface,
(with a relevant D value regarding the degree of disturbance exerted on
the tunnel), and the plastic-EDZ boundary, D( 0)= , respectively. It
should be clarified that the superscript “,” denotes that the corre-
sponding parameter belongs to the excavation damaged zone and it is
not referring to a different parameter. Indeed, according to Saiang
(2008a), the modulus of the damaged zone calculated using Eq. (70) is
occurred at the tunnel boundary and then varied linearly to the
boundary of undamaged rock. In this boundary, D can be obtained
using general recommendations proposed by Hoek et al. (2002) and
Hoek (2012). Also, in Hoek (2012), it is emphasized that the blast da-
mage factor D should not be applied to the entire rock mass surrounding
the excavation and the damage factor D should only be applied to the
actual zone of damaged. This is another proof for the fact that con-
sideration of the excavation damaged zone enhances the accuracy of
the modeling of the problem. Outside of the BIDZ the rock mass is
considered undamaged and therefore D = 0 (i.e. no disturbance). It is
noteworthy that in the cases that the formation of a damaged zone is
neglected, in practice, the disturbance/damage factor is generally ex-
tended to the whole problem domain. Nevertheless, the described
scheme adopted by Saiang (2008a) is proposed for the consideration of
the damage factor in the problems, which consider the formation of
such damaged zones.

The following algorithm (shown in Fig. 6) is used to develop a
FORTRAN code to analyze the ground reaction curve of circular tunnels
in an elastic-plastic-EDZ rock mass, which accounts for strain softening
in the plastic region and obeys Unified strength criterion.

Also, detailed steps of different sections of the algorithm (presented
in Fig. 6) along with the applied relationships to model GRCs are pre-
sented in “Supplementary material C”.

5. Verification and comparison

To investigate the validity of the proposed algorithm, the results of
field measurements of displacements occurred at the crown of
Hanlingjie tunnel in Hunan, China at a depth of 146m is used. Tunnel’s
section along with the geology conditions of the tunnel’s site is pre-
sented in Fig. 7. The tunnel’s support is composed of a sprayed concrete
(with the thickness of 25 cm) and a lining of concrete layer with a width
of 45 cm. Young’s modulus, Poisson’s ratio, compressive strength and
the thickness of sprayed and lining concrete layers are illustrated in
Fig. 7. Table 3 shows strength and other required parameters of the
surrounding rock mass (Zou et al., 2017). Also, since the required date
for the damaged zone is not presented, it is characterized with caution.

Indeed, using all the applicable range for the parameters with un-
certainties, the whole possible range is covered and the results are
discussed. Based on the available data, the required data for char-
acterizing EDZ can be presented as following:
m s a0.428, 0.0000395, 0.527' ' '= = = . These parameters are calculated
using the back calculation of peak strength parameters resulting in
GSI 41.88p = and m 17.7736i = and using Eq. (21) for GSI 27' = and
D 0.6' = (value of disturbance factor for mechanical excavation in the
damaged zone).

Some of the parameters of the damaged zone used for modeling
purposes are as following: r

' = , r
' = and kN m28.65 /ave

' 3= (based
on the standard range of ' for the Breccia rock mass,
( kN m28.6 28.7) / 3).

As explained in the manuscript, some of the parameters required to
characterize the proposed algorithm for the validation case are pre-
sented in Fig. 7 and Table 3 (as originally presented in Zou et al.
(2017)). Other remaining parameters are calculated using the proper
application of the available equations based on the basic strength
parameters of the studied case. REDZ and b are the only remaining
parameters, which their values are not presented.

The following descriptions illustrate the principles to define these
two parameters:

Damaged zone around the tunnels are formed as a consequence of
mechanical excavation or blasting operations. There are several
methods to characterize the damaged zone and to predict/calculate the
radius of the excavation induced/blast induced damaged zone. Among
them, observation and classical method of Anläggnings AMA 98 (1999),
which is developed based on the explosive type, charge diameter and
charge concentration, also, scaling law proposed by Holmberg and
Persson (1980), damping law proposed by Hustrulid et al. (1992), the
quantified values using the (García-Bastante et al., 2012) method based
on Langefor’s theory of blast calculation or the results of experimental
and field investigations of Saiang (2008b) can be effectively applied.
Reports presented for the blast-induced damage investigations on the
SVEBEFO project are other key resources for characterizing this zone
(Andersson, 1992; Nyberg et al., 2000a, 2000b; Olsson and Bergqvist,
1993, 1995, 1997; Olsson et al., 2002; Olsson and Ouchterlony, 2003;
Olsson et al., 2004).

Applying one of the described methods, the value of REDZ required
for the characterization of the damaged zone in the proposed solution
can be obtained. Also, according to the described methods and the re-
sults presented in González-Cao et al. (2013), the practical lower and
upper bonds for the thickness of REDZ is m(1 2) .

Since the required information for the calculation of REDZ in the
Hanlingjie tunnel (e.g. crack length, etc.) has not been presented, both
lower and upper bonds of REDZ are investigated
(R m and m6.5 7.5EDZ = , respectively, corresponding to the
thickness of m1 and m2 for the damaged zone.

In addition, parameter b varies between 0 and 1. Hence, as its ac-
curate value has not been experimentally measured in the original Zou
et al. (2017), to comprehensively study the whole possible range for the
variation of b, three different b values are investigated
(b and0, 0.5 1)= . This allows the consideration of all the possible
combinations for the variation of R and bEDZ .

Results of field measurements along with the results of proposed
algorithm (for both upper and lower bounds of the radius of the da-
maged zone, also, minimum, average and maximum b values) are
presented in Fig. 8. As shown, all the REDZ and b values (in the range
between upper and lower bonds) used to develop the GRC lead to ac-
ceptable pressure-displacement data pairs compatible to the field
measurements in both measured displacements. The acceptable differ-
ence between the measured and calculated values shows the validity of
the proposed algorithm in the development of GRC of circular tunnels
in the strain softening, elastic-plastic-EDZ rock mass. It should be noted
that the consideration of R m7.5EDZ = and b 0.5= results in the best
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Fig. 6. Proposed algorithm for calculation of the new comprehensive GRC.
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fitness between the calculated and field monitoring data. This can be a
proof for the positive effects of the proper consideration of these
parameters in the development of GRC.

To investigate the comprehensiveness of the proposed algorithm in
the prediction of ground reaction curve, first, three simplified cases are
considered as comparison examples. Next, taking the new features of
the proposed algorithm into the consideration, discrepancies between
the available solutions and the proposed algorithm is further discussed.
In the first section, the algorithm is simplified to the special cases (ig-
noring new features, which are not modeled in the literature) and the
results of the proposed algorithm is compared to the cases with avail-
able solutions. Accuracy of the proposed algorithm can be examined
through matching the results of the new algorithm with those available
in the literature. Also, since the previous solutions partially treated with
one of the described problem's complexities, well-validating the pro-
posed algorithm with all the comparing examples will show its ap-
plicability in the comprehensive GRC modeling. Next, detailed discus-
sions on the possible discrepancies are shown through applying new
features to one of the available cases. As the first case of the first sec-
tion, Section 5.1.1 considers a circular tunnel in an elastic-plastic rock
mass case originally solved by Lee and Pietruszczak (2008) for a strain
softening case. In this example, as shown in Table 1, no excavation
damaged zone exists and eliminating that consideration, the proposed
algorithm yields the same result as obtained by Lee and Pietruszczak
(2008). This solution shows the accuracy of the user-coding process.
Since the problem of a circular tunnel in the elastic-plastic, strain
softening rock mass was also solved using a self-similar solution by
Alonso et al. (2003), this example is also considered and the results of
the proposed algorithm are compared to their self-similar solution.
Second case, which deals with the consideration of variable post-peak
dilatancy, presents the application of the exponential decaying post-
peak dilation parameter originally proposed by Alejano and Alonso
(2005) and Alejano et al. (2009). Since original models are only applied
to the Mohr-Coulomb strength criterion, the studied case of Ketabian
and Molladavoodi (2015), which uses the variable non-linear post-peak
dilation parameter of Alejano and Alonso (2005) and Hoek-Brown
strength criterion, is used. In this example, formation of an EDZ around
the tunnel is not considered, and hence, the corresponding EDZ for-
mulations are not used for comparison purposes (the problem is sim-
plified to GRC development for the strain softening elastic-plastic rock
mass with the variable post peak dilatancy). As described, it imple-
ments the variable dilatancy models into the newly developed iterative

Fig. 7. Cross section and the site geology of Hanlingjie tunnel (Zou et al., 2017).

Table 3
Geometric and material properties of
Hanlingjie tunnel’s surrounding rock mass
(Zou et al., 2017).

Parameter Value

Ei 4 GPa
i 0.35
0 4.8MPa
cp 10MPa
cr 6MPa

mp 2.23
sp 0.0013
ap 0.51
mr 0.86
sr 0.0002
ar 0.52

p 12○

r 5○

p 0.008

Fig. 8. Verification of the results of the proposed algorithm with the field
measurements data.
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solution and compares the results with the obtained results available in
the literature, and these results are in agreement. As the third com-
paring case, the problem solved by Zareifard and Fahimifar (2016), the
excavation damaged zone is modeled through assigning new strength
parameters to EDZ (calculated using a Hoek-Brown D factor). Weight of
EDZ, variation of Young’s modulus in this zone, exponential decaying
dilation parameter and strain softening in the plastic zone are not
considered; as in two previous cases, the proposed algorithm is sim-
plified to the conditions and assumptions of the example. The proposed
algorithm is used to obtain GRC, radial displacement, radial stress, and
tangential stress, and to compare them with those available from the
simplified cases.

5.1. Elastic-plastic rock mass case considering strain softening

5.1.1. Comparison with (Lee and Pietruszczak, 2008)
In the problem solved by Lee and Pietruszczak (2008), a circular

tunnel in an elastic-plastic rock mass with the following parameters is
assumed. In this model, since the studied material is a medium rock
mass, the effect of strain softening in the plastic zone has also been
considered. Since it does not model the excavation damaged zone, step
4 of “Supplementary material C” in the proposed algorithm will be
omitted and the solution will be only conducted for the plastic zone
replacing r

P E with as the target radial stress. Also, the algorithm will
be simplified to the first 16 steps (Supplementary material C) without
variation of dilatancy (exponential decaying dilation parameter is not
modeled) and drop modulus. Moreover, regarding the available mate-
rial’s strength parameters, effect of intermediate principle stress, b
parameter, is not considered, and a Hoek-Brown strength criterion is
used to develop the solution. The parameters used are:
b m E MPa MPa MPa3 , 0.25, 5700 , 15 , 30 ,i cp0= = = = =

MPa m m s e s e a a

and MPa

25 , 2, 0.6, 4 3, 2 3,

0.5, 15 , 5 , 0.01 P 5.7027 .
cr p r p r p r

p r
p

ic
Â Â

= = = = = =

= = = = =° °

Fig. 9 presents the results of Lee and Pietruszczak (2008) along with
those obtained from the proposed, new user-coded algorithm. Re-
garding the explained simplifications, the results are the same and as it
can be seen, those results conform well to those obtained from the
proposed algorithm.

5.1.2. Comparison with Alonso et al. (2003)
Similar to the example of Lee and Pietruszczak (2008), Alonso et al.

(2003) considered a circular opening in an elastic-plastic rock mass
experiencing the strain softening in the plastic zone. Hoek-Brown
strength criterion with a a 0.5p r= = was considered and compared to
the proposed algorithm, effects of intermediate principle stress, ex-
ponential decaying dilation parameter, formation of EDZ (variation of
Young’s modulus in EDZ and deterioration of materials’ strength
parameters) are ignored. They used a self-similar solution to analyze
their problem. Other used materials' and tunnel's parameters are as
follows:
b m G MPa MPa MPa3 , 0.25, 552 , 3.31 , 27.6 ,i c0= = = = =
m m s e s e0.5, 0.1, 1 3, 5 4, 15 , 5 ,p r p r p r

Â Â= = = = = =° °

and MPa0.0125 P 1.2159 .p
ic= =

To compare results of the proposed algorithm with the self-similar
solution of the example of Alonso et al. (2003), some simplifications
(steps 4 and 16.9 is ignored, steps 17–19.21 are omitted and instead of

Fig. 9. Comparison with the ground reaction curve of Lee and Pietruszczak
(2008); case a a 0.5p r= = .

Fig. 10. Comparison with the ground reaction curve of Alonso et al. (2003).

Fig. 11. Comparison with radial displacements of Ketabian and Molladavoodi
(2015).
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materials’ strength parameters associated with the Unified strength
criterion, Hoek-Brown strength parameters are used) are made to the
proposed algorithm and the obtained results are presented in Fig. 10. As
shown, results of the proposed algorithm are in a very close agreement
with those presented in Alonso et al. (2003).

5.2. Strain softening rock mass case considering exponential decaying post-
peak dilation parameter

In this example, the capability of the proposed method in modeling
variable post-peak dilation coefficient is shown through modeling a sim-
plified case (a case previously studied by Ketabian and Molladavoodi
(2015)), in which the formation of damaged zone is not taken into account.
Also, ignoring the effect of intermediate stresses, Hoek-Brown strength
criterion is considered. Hence, the proposed algorithm will be simplified
and step 4 (Supplementary material C) will be omitted. In this case, radial
stress monotonically decreases from R to reach . The first 16 steps of
“Supplementary material C” are considered and radial displacements are
obtained for different internal support pressures. Coefficient of dilation
exponentially decreases from its peak value in the elastic-plastic boundary
and is calculated using Eq. (14). The used input parameters are as following:
b m E GPa MPa P MPa m2.25 , 6.5 , 0.25, 15.3 , 0, 60 , 19i i C i0= = = = = = =
andGSIpeak =50. As seen in Fig. 11, the obtained GRC is accurately identical
to the results obtained by Ketabian and Molladavoodi (2015).

5.3. Elastic-perfect-plastic behavior of a rock mass case considering EDZ

The other example used to assess the performance of the proposed
algorithm is a model developed by Zareifard and Fahimifar (2016). It
should be noted that this example is referred as the case of a tunnel in a
soft elastic-perfectly plastic rock mass (Zareifard and Fahimifar, 2016).
Nevertheless, regarding the value of GSI , 50, it should be treated as a
medium rock mass with a strain softening behavior. In this section, in
order to compare the results of the original problem with the proposed
algorithm, the softening behavior is ignored (as the original case is
solved using an elastic- perfectly plastic behavior assumption). Next
and in the future sections, this problem is re-solved using the proper
strain-softening behavior and the results are compared.

In the model of Zareifard and Fahimifar (2016), the formation of
EDZ is modeled by defining new strength parameters for EDZ. But, the
weight of damaged rock in this zone, also, the variation of Young’s
modulus are not considered, and the proposed algorithm is then sim-
plified. Also, in this simplified model, the effect of intermediate prin-
ciple stress, exponential decaying dilation parameter and softening (as
previously mentioned) is not considered. Section 4 of the proposed al-
gorithm (Supplementary material C) is only used to solve Eq. (33) for
all the tunnel’s directions. Section 19.6.1 (Supplementary material C) of
the proposed algorithm is used for both sidewall and crown directions
(Section 19.6.2 is omitted). It only uses a constant value for Young’s
modulus in EDZ (Sections 19.8–19.10 are deleted). Also, the solved
model does not consider strain softening in the plastic zone. Hence,

p r= . In addition, variation of dilatancy is not considered in their
modeling. The parameters used to solve the problem are as follows:

Material parameters in the plastic zone:

MPa m m s s GSI

E MPa D

30 , 1.7, 0.0039, 50,

5500 , 0, 0
C p r p r= = = = = =

= = =

Material parameters in EDZ:

E MPa m s MPa D3800 , 0.8, 0.001, 30 , 0 and
0.6

c
' ' ' ' '= = = = =
=

Other parameters used are b m m5 ,i intact= =
MPa P MPa10, 0.25, 30 , 5i0= = = . As can be seen, k, representing

the relationship between radial and tangential plastic strain increments,
is assumed to be constant for all the rings in both plastic zone and EDZ.

Fig. 12, shows radial displacement, radial stress, and tangential stress
around the tunnel versus distance from the tunnel’s center for both the
present study and Zareifard and Fahimifar (2016). As can be seen, the
results gained from the new method accurately correlate with the
simplified analytical solution of Zareifard and Fahimifar (2016). The
accuracy of the obtained results shows that the proposed algorithm can
comprehensively model different behaviors and situations, and that it
can be efficiently used to model ground reaction curve of tunnels ex-
cavated in rock masses with complicated behaviors.

5.4. Effects of new features

To show effects of new features of the proposed algorithm, the
problem originally solved by Zareifard and Fahimifar (2016), which
separately presents the material parameters in the plastic and excava-
tion damaged zones is considered. Then, effects of considering each of
the new features of the proposed algorithm are investigated in separate
sections. In the first section, intermediate principle stress is taken into
the consideration through modeling the b parameter available in the
USC (for different b values) and the results are compared to the original
problem (which is solved based on Hoek-Brown criterion). Second
section deals with effects of the weight of the damaged rock mass and
compares the obtained GRCs for the cases that there is no weight effect
to the case of applying the weight of the rock mass in the EDZ into the
problem. Also, effects of existence of a softening zone, as well as an
exponential decaying dilation behavior are examined in the third sec-
tion. It should be noted that the following sections present the GRC of
tunnels in the crown direction.

This section better presents the effectiveness and the importance of
consideration of new features of the proposed algorithm in the mod-
eling of ground reaction curve of rock masses.

5.4.1. Effect of the intermediate principle stress
The parameter b represents the effect of intermediate principle

stress on the strength of the rock mass. In the cases that effects of the
intermediate principle stress are ignored, the value of b is equal to zero
(USC coincides with Hoek-Brown failure criterion), while larger values
reflect the effects of different extents of intermediate principle stress.
Five common b values, 0, 0.25, 0.5, 0.75 and 1, are used to investigate
the role of intermediate principle stress on the ground reaction curve. In
this regard, re-modeling the case of Zareifard and Fahimifar (2016)
(Section 6.1.3), as shown in Fig. 13, it is declared that considering the b
parameter will affect the ground reaction curve. It should be taken into
the consideration that other incorporating parameters are constant and
equal to the original case of Zareifard and Fahimifar (2016). As shown,
ignoring the intermediate principle stress parameter leads to over-
estimating displacements and hence the support system. Also, with
increasing the values of b, tunnel's convergence, radial displacement,
decreases. It is due to the fact that strength of the surrounding rock
mass increases, as other missing rock mass’ strength index is in-
corporated into the model.

5.4.2. Effect of weight of the damaged rock mass in EDZ
Similar to the previous section, the case of Zareifard and Fahimifar

(2016) is re-modeled using the new proposed solution and considering
the effect of the weight of the damaged zone. Assuming kN m30( / )' 3= ,
two different radiuses, 7 (m) (similar to the original case of Zareifard
and Fahimifar (2016)) and 8 (m), for the damaged zone are assumed.
Also, effect of both of constant and variable Young’s modulus on the
ground reaction curve is investigated. Indeed, in the case of variable
Young’s modulus, it is subjected to a linear decrease from the available
value for the elastic mass, 5500MPa, to the proposed value of Hoek and
Diederichs (2006) for the damaged mass at the tunnel boundary,
2567MPa and the obtained results are compared to the case of a con-
stant Young’s modulus, 3800MPa, for the whole damaged zone. As
shown in Fig. 14, considering a variable Young’s modulus results in
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Fig. 12. Comparison with (a) radial displacements; (b) radial stresses and (c) tangential stresses of Zareifard and Fahimifar (2016); soft rock mass case; R m7EDZ = .

Fig. 13. Effect of intermediate principle stress on the ground reaction curve.

Fig. 14. Effect of weight of damaged zone on the radial stresses around the
tunnel in the crown direction.
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lower displacements for a defined support pressure. Also, for low sup-
port pressures, consideration of the weight of the damaged zone and
increasing its radius results in almost the same displacements. On the
other hand, for higher support pressures, larger radial displacements
are occurred when higher weights of the damaged zone are introduced
to the problem.

5.4.3. Effect of exponential decaying dilation and critical softening
parameter

As described in Section 6.1.3, the studied material is a medium rock
mass and hence, an elastic-plastic behavior, which considers the ma-
terial's softening better presents the material's accurate behavior.
Hereupon, in this section, effects of deterioration of material's strength
parameters (material softening) is evaluated. Also, in the case of
Zareifard and Fahimifar (2016), a constant dilation parameter is used to
characterize stress-strain relationships around the tunnel. However,
(Alejano and Alonso, 2005) recommended the application of an ex-
ponential decaying dilation parameter in the development of post-peak
behavior of rock masses in the plastic region. Regarding the proposed
methodology and the developed algorithm, Fig. 15 applies the original
data presented in Zareifard and Fahimifar (2016) and compares dif-
ferent dilation behaviors. In this regard, similar to the original solution,
the first model assumes a constant dilation parameter (no material
softening is allowed and two different values for p are investigated; 0°

(similar to the original case of Zareifard and Fahimifar (2016)) and
3.11°), while similar to Lee and Pietruszczak (2008), the second solu-
tion considers a linear decrease in the dilation angle (it considers a
linear decrease in the dilation angle (regarding Eqs. (17) and (18)) and
updates the dilation parameter regarding Eq. (8) for i values instead of

p). The third model (considering that all other concerning parameters
are kept constant) incrementally updates (with an exponential decaying
trend with respect to the softening parameter) values of ki based on the
initial kp available on the softening-residual boundary (based on

3.11p
Â= °). Fig. 15 shows how the tunnel behavior is influenced by

different dilation behaviors. It should be noted that values of p (used in
the second and third models) and r (used in the second model) are,
respectively, 3.11Â° and 2.44Â°. Their values are calculated using Eqs. (9)
and (10) (in Eqs. (9) and (10), residual parameters are used to obtain
the residual dilation angle). In addition, strength parameters of the rock
mass in the residual region are computed using Eq. (21) and the pro-
posed relationships for the calculation of Hoek-Brown strength para-
meters (m s0.805, 0.00039r r= = and a a 0.523r

'= = ). Other affecting
parameters are kept constant.

As depicted in Fig. 15, in the cases that materials’ softening behavior
is not allowed, tunnel’s convergence is underestimated. Increasing the
occurred displacements in the softening models is a consequence of
deterioration of material’s peak strength parameters to the residual
ones. Also, radial displacement of tunnel’s crown increases as the
constant dilation angle increases. In addition, comparing to the ex-
ponential decaying dilation model, the second softening model, linearly
decaying dilation model, slightly overestimates displacements.

Moreover, to investigate the role of existing a softening zone on the
ground reaction curve, three different critical softening parameters
(0.001, 0.0214 and 1) are considered (for the exponential decaying
dilation model) and the materials’ strength parameters are subjected to
a deterioration for softening parameters greater than these values and
results are compared to the original case of Zareifard and Fahimifar
(2016) (Fig. 16). It should be noted that the value of 0.0214p =
corresponds to the case of application of Eq. (18) to the original pro-
blem of Zareifard and Fahimifar (2016).

As Fig. 16 declares, tunnels surrounded by rock masses with higher
critical softening parameters experience lower radial displacements. It
can be due to increasing the rock masses’ ductility and decreasing its
brittleness as a consequence of increasing the critical softening para-
meter. Indeed, in such materials, the deterioration of material’s strength
parameters is later initiated (with respect to the softening parameter
development).

6. Conclusion

A new method to solve stress-strain around circular tunnels sur-
rounded by elastic-plastic-EDZ rock mass under far field hydrostatic
stress is presented. Effect of intermediate principle stresses are also
taken into account through the parameter b available in the Unified
Strength Criterion (USC). The developed solution algorithm uses ad-
vantages of both well-derived solution schemes (variable dilation
parameter of Alejano and Alonso (2005) and Alejano et al. (2009,
2010), as well as the iterative finite difference solution proposed by Lee
and Pietruszczak (2008)). In this regard, the general solution scheme
proposed by Lee and Pietruszczak (2008) is extended to account for the
formation of excavation damaged zone around the tunnels. First, using
the Runge-Kutta-Fehlberg numerical solution of the governing equili-
brium equation, radial stress in the plastic-EDZ boundary is calculated
and the solution steps are performed for the plastic region, considering
the pre-defined value of critical support pressure (calculated using
Newton-Raphson method) and a monotonic decrease of radial stress
from PiC to the value of radial stress in the plastic-EDZ boundary, r

P E.
In the proposed algorithm, material softening (through defining soft-
ening parameter and softening-residual boundary) and exponentially
decaying dilation parameter are both allowed in the plastic zone. Also,

Fig. 15. Effect of dilation parameter on the ground reaction curve.

Fig. 16. Effect of critical softening parameter on the ground reaction curve.
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dilation parameter can be assessed using both Mohr-coulomb and Hoek-
Brown similar types of plastic potential functions. The obtained results
for strains and stresses in the last iteration of the solution in the plastic
region is used as an initial condition for the excavation damaged zone,
and the solution is then followed by the monotonical decrease of radial
stress form r

P E to internal support pressure, . While solving for stress-
strain states in the damaged zone (separately for tunnel’s crown and
sidewalls’ directions), variation of Young’s modulus in EDZ proposed by
Saiang (2008a), deterioration of material’s strength parameters, and the
weight of the damaged material are considered, and the normalized
radius in this zone is calculated in a way so as to yield the governing
equilibrium equation. Also, tangential plastic strain increments are
calculated using the finite difference approximation of the compat-
ibility equation in EDZ based on the newly developed normalized ra-
dius. It is used in conjunction with dilation parameter to achieve radial
plastic strain increments based on the non-associative flow rule. Fol-
lowing the described algorithm, the pressures required to restrict the
tunnel’s displacements to arbitrary ui, ground reaction curve, are ob-
tained. To approve the validity of the proposed approach, results of the
field measurements of Hanlingjie tunnel in China is used. Comparing
the obtained results to the field measurements in the tunnel’s crown, its
accuracy is proven. In addition, the comprehensiveness of the proposed
solution is examined through three simplified cases. In these examples,
the problem is simplified to the cases that have closed-form or nu-
merical solutions available in the literature. It is shown that the results
of the simplified solution comply well with the ground reaction curve,
stresses and strains of the available solutions. It should be noted that
modeling all the concerning parameters will possibly result in con-
siderable differences in the developed GRCs. To show the described
discrepancy, the case of Zareifard and Fahimifar (2016) is selected for
further investigations. Applying new features of the proposed algorithm
to the original model of Zareifard and Fahimifar (2016), effects of new
different introduced parameters on the ground reaction curve is eval-
uated. It is shown that intermediate principle stress, exponential de-
caying dilation, critical softening parameter and the weight of the da-
maged zone considerably affect the GRC of the tunnel in an elastic-
plastic-EDZ rock mass and ignoring these parameters will result in
significant discrepancies in the ground reaction curves.

The proposed method can be efficiently used to comprehensively
model the ground reaction curve of circular tunnels in the medium
quality rock masses. In addition, parametric studies to account for un-
certainties in the damaged zone will be carried out considerably more
efficiently using the new method as compared to available commercial
FEM, FDM, and BEM numerical packages (from both time-saving and
cost-effectiveness points of view).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.tust.2018.11.045.
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